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The magnetic penetration depth ߣ is one of the most fundamental parameters of superconductivity which is the order of 
several hundred angstroms. Thus in this work, temperature behavior of the penetration depth has been investigated. At first 
Gorter-Casimir two fluid model is viewed. Due to importance of the BCS energy gap, it appears that in high temperature 
superconductors (HTS) penetration depth is different from the two fluid model. At low temperatures, the condition of 
ܶ/ ܶ  1/3, unconventional superconductors variation of penetration depth with temperature was compared with available 
literature results. 
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1. Introduction 
 
One of the basic lengths of superconductivity is the 

magnetic penetration depth ߣ [l]. The concept of a 
characteristic length for magnetic field penetration into a 
superconductor was determined after the discovery of 
Meissner effect in 1933. C. J. Gorter and H. Casimir 
introduced a two fluid model of superconductivity in 1934 
[2-5].  

In 1935, F. and H. London brothers introduced a 
phenomenological model of superconductivity [6]. One of 
the most important characteristic of superconductivity is 
electrodynamics response. It has been generally accepted 
that the electrodynamics of superconductors in the London 
limit is described by the London equations [7]. Response 
to low-frequency electromagnetic fields is characterized by 
the two most important properties of superconductivity. 
These are perfect conductivity and perfect diamagnetism. 
London theory predicts that low magnetic fields are not 
completely excluded from a superconductor. But 
penetrates a small distance across the boundary. Hence, the 
penetration depth is of the order of several hundred 
angstroms [8].  

The London theory could not predict correctly the 
absolute value of ߣሺܶ ൌ 0ሻ and could not explain the 
variation of the penetration depth with alloying [8]. 
Combined with the thermodynamic two-fluid model of the 
superconducting phase, the London theory makes definite 
predictions of the temperature variation of penetration 
depth. So, for the first time the BCS theory made the 
connection between the penetration phenomenon and the 
fundamental microscopic energy gap parameter of the 
superconducting phase [9].The temperature dependence of 
 ሺܶሻ in the BCS theory reflects the temperatureߣ
dependence of the energy gap [8]. Since it depends 
explicitly on the superconducting energy gap, is related 
fundamentally to the symmetry of the superconducting 

state and thus to the mechanism of pairing. Furthermore, 
the zero temperature value ߣሺ0ሻ  contains information on 
the effective mass and density of the superconducting 
carriers [1].  

The temperature dependence of London penetration 
depth plays an important role in the ongoing debate about 
the mechanism of high-Tc superconductivity. It is indeed 
essential piece of information about this mechanism to 
know the symmetry of the order parameter [10]. Thus in 
HTS are important of the fact that the material is s-wave or 
d-wave pairing.  

 
 
2. Theory  
 
 In a superconducting material, superelectrons 

experience no resistance to their motion. Therefore when a 
constant electric field ܧሬԦ is retained in the material, the 
electrons accelerate steadily under the action of this field 
[11]. However, the first London equation is given by  

 
ሬԦܧ                               ൌ డ

డ௧
൫ΛܬԦ௦൯                                     (1) 

          
where Λ ؠ ݉/݊௦݁ଶ [13]. Λ is a phenomenological 
parameter. Here, acceleration of the superfluid carriers 
with charge e and mass m give rise to the supercurrent ܬԦ 
[7]. This equation describes perfect conductivity because 
of any electric field speeds up the superconducting 
electrons rather than simply maintaining their velocity 
against resistance as described in Ohm’s law in a normal 
conductor [12]. The second London equation is given by 
[14];  
 

ሬሬԦ     ൈ ௦ሬሬԦܬ ൌ െ ೞమ


             ሬԦ                                     (2)ܤ
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To obtain the London penetration depth, we can write the 
following equations. 
 (1.2)This equation is that this screeni

ሬሬԦ      ൈ ሬԦܤ ൌ  ௦ሬሬԦ                                       (3)ܬߤ
 

ሬሬԦ                            ൈ ൫ሬሬԦ ൈ ሬԦ൯ܤ ൌ ሬሬԦ൫ߤ ൈ   ௦ሬሬԦ൯                     (4)ܬ
  

                          ൌ െ ఓబೞమ


 ሬԦ                                          (5)ܤ

 
        Recall and using that vector calculus identity                  
ሬሬԦ ൈ ൫ሬሬԦ ൈ ൯ܤ ൌ .ሬሬԦሬሬԦ൫  ሬԦ൯ܤ െ  ሬԦ and on the ground thatܤଶ
.ሬԦߘ ሬԦܤ ൌ 0 , we can write as  
 

ሬሬሬԦ      ൈ ൫ሬሬԦ ൈ ሬԦ൯ܤ ൌ െ ଵ
ఒಽ

మ  ሬԦ                                (6)ܤ

And 
 

ሬԦܤଶ                   ൌ ଵ
ఒಽ

మ  ሬԦ                                                  (7)ܤ

  
where  ߣ is the London penetration depth which is defined 
as 

ߣ                    ൌ ට


ఓబೞమ                                      (8) 

 
[15, 16]. Eq. (7) should be pointed out that to describe the 
distribution of magnetic flux density inside a 
superconductor based on the known properties of 
superconductors [11]. 
  
 

3. Two fluid model 
 
This model is based on the presumption that all current 

carriers are normal electrons for temperatures greater 
than ܶ. When a superconductor is cooled below  ܶ, 
normal electrons begin to transform to the superelectron 
state [17]. The conduction electron density is ݊ ൌ ܰ/ܸ, 
where N is the number of conduction electrons in the 
sample of volume V. ݊ and ݊௦ are the densities of normal 
state and superconducting electrons, where ݊ ൌ ݊  ݊௦ 
[18]. In the range of 0 ൏ ܶ ൏ ܶ , the total current density ܬԦ 
flowing through a material is the sum of the normal current 
density ܬԦ and the superfluid density ܬԦ௦ [19], 

 
Ԧܬ                   ൌ Ԧܬ   Ԧ௦                                       (9)ܬ

 
At absolute zero, all conduction electrons are coupled 

into “Cooper pairs” constituent of the superfluid. 
The two-fluid model is a useful way to build 

temperature effects into the London relations. It is 
reasonable to derive the relation of temperature 
dependence in a logical way from the Gorter-Casimir two 
fluid model [20]. According to this model, the density of 
superconducting electrons at reduced temperature ்

்
  and 

the temperature dependence of ݊௦  is that [17, 21]  
 

݊௦ሺܶሻ ൌ ݊ 1 െ ቀ ்

்
ቁ

ସ
൨                     (10) 

 
In Fig.1, we plotted that the number density of 

superelectrons ݊௦ሺܶሻ/݊ versus ܶ/ ܶ for one of the 
conventional superconductor Nb.  
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Fig. 1. Temperature dependence of the density of 
superconducting electrons ݊௦ as given by Eq. (10) for Nb.  
                              Here ܶ ൌ  ܭ 9.25

 
 

4. The penetration depth 
 
 The penetration depth is a magnetic property of a 

superconductor. With a few angstroms deep, in a very thin 
surface layer can be any magnetic field. With a large 
superconductor, it is almost impossible to know it’s overall 
size accurately enough for direct comparison with the 
penetration layer thickness [20].  

 The value of the penetration depth depends on the 
ratio of the Bardeen-Cooper-Schrieffer (BCS) coherence 
length ߦ and electron mean-free path ݈ [22]. When the 
mean free path is much shorter than the coherence length 
the material is said to be in the dirty limit (݈ ا  ሻ, while ifߦ
the opposite is true, the material is in the clean limit 
 ሺߦ ا ݈ሻ. That is, for the clean limit 

కబ
 is equal to 100, for 

the dirty limit 
కబ

 is equal to 0.01 [23].  
Tinkham found that the BCS relationship between 

these two quantities at zero temperature is the best 
approximated by [24]; 
 

ሺ0ሻߣ            ൌ ߣ ቀ1  కబ


ቁ
ଵ/ଶ

                         (11)                     
 

The energy gap is characteristic of the material and 
dependent on temperature. In the BCS theory, the critical 
temperature Tc is related to ∆ by the following constraint, 
ଶ∆బ

ಳ ்
ൌ 3.52 where ݇ is Boltzmann's constant. This 

constraint is known as the weak-coupling limit and it is 
characteristic of the BCS theory. Most superconductors do 
not follow this relationship exactly, but instead have a 



The temperature dependence of magnetic penetration depth in superconductors                                           809 
 

higher value for  ଶ∆బ
ಳ ்

 . If this ratio is large, the material is 
said to be   strongly-coupled, that is 2∆/݇ ܶ  3.52.  
However, if this ratio is not too large, the superconductor 
is still considered to be weakly-coupled, and the BCS 
theory is still accurate. That is, for the weak coupling 
limit’s value is ∆బ

ಳ ்
ൌ 1.75 [23, 25]. In the literature, the 

weak coupling clean limit is usually represented as 
conventional BCS behavior. Even though energy gap 
vanishes at the transition temperature, the fundamental of 
BCS theory uses an energy gap. The BCS temperature 
dependence of the penetration depth can be approximated 
well by [27]; 

 
 
ଶሺܶሻߣ   ൌ ଶሺ0ሻ/ሾ1ߣ െ ሺܶ/ ܶሻଷିሺ்/ ்ሻሿ                   (12) 

 
In the two fluid model penetration depth is given by          

[26, 27]  
 

ଶሺܶሻߣ            ൌ ଶሺ0ሻ/ሾ1ߣ െ ሺܶ/ ܶሻସሿ               (13) 
 

The energy gap is not considered in this formula; 
therefore Eq. (13) does not describe the penetration depth 
of a weak-coupling BCS superconductor. [28]. 
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Fig.2. Various theoretical temperature dependencies of 
  ଶሺܶሻ. Weak clean line (BCS) is given by Eq. (12)ߣ/ଶሺ0ሻߣ
                   and two-fluid line by Eq. (13) for Nb.  

 
 
 We plot the temperature dependence of ߣଶሺ0ሻ/ߣଶሺܶሻ 
by using Eq. (12) and Eq. (13) for Nb. This graphic is 
fitted to the literature [25]. In Fig. 2, we also compared 
with the two fluid approximations and the BCS theory. The 
change of the penetration depth in unconventional 
superconductors (for YBCO) with use of Eq. (12) and Eq. 
(13) is shown in Fig. 3.  
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Fig. 3. The change in the penetration depth calculated 
with using two fluid model (Eq. 12) and equation (13). 

 
 

 In Fig. 3, open circle represents a two-fluid 
approximation with ߣሺ0ሻ ൌ    and dotted lineܣ1400
represents the clean weak-coupling penetration depth ߣ 
for ߣሺ0ሻ ൌ  . [1]ܣ1400
 
 

5. Penetration depth at low temperatures 
 
At low temperatures, ்

்
 ଵ

ଷ
 [30, 35], the temperature 

dependence of penetration depth is directly related to 
electrodynamic properties. Hence, its temperature 
dependence is calculated by using the electrodynamic 
theory of superconductors. This theory includes that two 
limiting behaviors, local and nonlocal [29]. 

In the local approximation, when ߦ ا  ሺ0ሻ,  the lowߣ
temperature behavior of ∆ߣሺܶሻ ൌ ሺܶሻߣ െ  ሺ0ሻ areߣ
commonly used to determine the symmetry of the 
superconducting pairing state [30, 31]. Also, the analysis 
of temperature dependent superfluid density in 
superconductors is a powerful tool for examining pairing 
symmetry [32]. In order to determine the normalized 
superfluid density,  ߩ ൌ ሾఒሺሻ

ఒሺ்ሻ
ሿଶ , it is necessary to know the 

absolute magnitude of the penetration depth ߣሺ0ሻ [33]. The 
normalized superfluid density components are given by 
[34];   

 

ሺܶሻߩ  ൌ ሺ்ሻ


ൌ ቀఒሺሻ
ఒሺ்ሻ

ቁ
ଶ
                         (14) 

 
Defining ∆ߣ ൌ ሺܶሻߣ െ  ,ሺ0ሻ, Eq. (14) can be writtenߣ
 

ߩ ൌ ቀ1  ∆ఒሺ்ሻ
ఒሺሻ

ቁ
ିଶ

ൎ 1 െ 2 ∆ఒሺ்ሻ
ఒሺሻ

                               (15)  
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For s-wave superconductors, in the low temperature 
limit ߩ is given by; 

ߩ ൎ 1 െ ටଶగ∆బ
்

ݔ݁ ቀି∆బ
்

ቁ                     (16) 

Here ∆ is the zero temperature value of the energy 
gap in units of temperature [31, 35, 37]. The corresponding 
penetration depth from Eq. (15),      

     
          ∆ఒ

ఒሺሻ
ൎ ଵିఘ

ଶ
                                          (17) 

 
 when Eq. (16) is substituted in Eq. (17), 
 

ሺܶሻߣ∆
ሺ0ሻߣ

ൌ ඨߨ∆

2ܶ
݁ି∆బ/்                    ሺ18ሻ 

 
is obtained [34,36, 38]. 
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Fig. 4. Plot of ߣ߂ሺܶሻ versus temperature for MgB2. 

 
 
 In Fig.4, the temperature dependence of the change in 
penetration depth ∆ߣ is plotted versus the temperature for 
MgB2 using by Eq. (18). Fig. 4 represents a low 
temperature limit BCS behavior for an s-wave material 
which is fit to the literature [35, 37, 39]. 
 In the nonlocal approximation, when ߦ ب  ,ሺ0ሻߣ
nonlocality may play an important role in the 
electromagnetic response of a d-wave superconductor [31]. 
For the ݀௫మି௬మ symmetry now believed to describe high 
temperature cuprates. HTS are layered materials in which 
the superconducting pairing is accepted to occur in the 
CuO2 planes [40]. The gap parameter is given by [33, 34] 
 

         ∆ ൌ ∆ cosሺ2߮ሻ                                                        ሺ19ሻ 
 
At low temperatures this leads to a superfluid density 
varying as [34], 
 

ߩ                                 ൌ 1 െ ଶଶ
∆బ

ܶ                                 ሺ20ሻ 
That is, in the case of d-wave pairing is given by [41, 42]; 
 

ቈ
ሺ0ሻߣ
ሺܶሻߣ

ଶ

ൌ 1 െ 2 ൬
ܶ
∆

൰ ݈݊2                                         ሺ21ሻ 

or 
ሺܶሻߣ∆
ሺ0ሻߣ

ൌ
݈ܶ݊2

∆
                                                             ሺ22ሻ 
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Fig. 5. Plots of  1 െ ሾߣሺ0ሻ/ߣሺܶሻሿଶ versus T/Tc for   

YBa2Cu3O7 [34, 40] 
 

The materials such as YBCO possess d-wave 
symmetry. We plot that 1 െ ሾߣሺ0ሻ/ߣሺܶሻሿଶ versus T/Tc for 
YBa2Cu3O7 by using Eq. (21). It is clear that the linear 
term in 1 െ ሾߣሺ0ሻ/ߣሺܶሻሿଶ increases as Tc decreases 
[42].  

 
 
6. Discussion and conclusions 
 
 We have studied the temperature dependence of 

magnetic penetration depth in superconductors. First of all, 
this dependence is examined by two fluid model. However, 
since the energy gap is not considered in this model, it is 
modified in the literature. The penetration depth is 
impressed by the energy gap. Taking account to this 
property, two fluid approximation and BCS like behaviors 
are compared. It is seen that BCS behavior is better 
agreement with experiments in the literature than empirical 
two fluid model. 

 In HTS, the temperature dependence of ߣ contains 
important information on the involved pairing mechanism 
that is s or d wave, weak or strong coupling.  For s-wave 
materials that have not contained nodes, penetration depth 
was examined. We describe the penetration depth in the 
context of the BCS theory and the low temperature effects. 
Also, we have described that ݀௫మି௬మ wave superconductors 
which have nodes exhibits different behaviors than with s-
wave.  

 In addition, in the temperature dependence of the 
penetration depth, the energy gap has remarkable role. At 
low temperature limit, as the temperature dependence of 
penetration depth is exponential in s-wave 
superconductors, is linear in d-wave superconductors. 
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